- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Makarova, Nadezda (3)
-
Sokolov, Igor (3)
-
Backman, Vadim (1)
-
Dokukin, Maxim_E (1)
-
Gnanachandran, Kajangi (1)
-
Lekka, Małgorzata (1)
-
Peerzade, Saquib Ahmed (1)
-
Prasad, Siona (1)
-
Prasad, Tarun (1)
-
Rankine, Alex (1)
-
Song, Patrick (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Peerzade, Saquib Ahmed; Makarova, Nadezda; Sokolov, Igor (, Nanomaterials)null (Ed.)Fluorescent tagging is a popular method in biomedical research. Using multiple taggants of different but resolvable fluorescent spectra simultaneously (multiplexing), it is possible to obtain more comprehensive and faster information about various biochemical reactions and diseases, for example, in the method of flow cytometry. Here we report on a first demonstration of the synthesis of ultrabright fluorescent silica nanoporous nanoparticles (Star-dots), which have a large number of complex fluorescence spectra suitable for multiplexed applications. The spectra are obtained via simple physical mixing of different commercially available fluorescent dyes in a synthesizing bath. The resulting particles contain dye molecules encapsulated inside of cylindrical nanochannels of the silica matrix. The distance between the dye molecules is sufficiently small to attain Forster resonance energy transfer (FRET) coupling within a portion of the encapsulated dye molecules. As a result, one can have particles of multiple spectra that can be excited with just one wavelength. We show this for the mixing of five, three, and two dyes. Furthermore, the dyes can be mixed inside of particles in different proportions. This brings another dimension in the complexity of the obtained spectra and makes the number of different resolvable spectra practically unlimited. We demonstrate that the spectra obtained by different mixing of just two dyes inside of each particle can be easily distinguished by using a linear decomposition method. As a practical example, the errors of demultiplexing are measured when sets of a hundred particles are used for tagging.more » « less
-
Prasad, Siona; Rankine, Alex; Prasad, Tarun; Song, Patrick; Dokukin, Maxim_E; Makarova, Nadezda; Backman, Vadim; Sokolov, Igor (, Advanced NanoBiomed Research)A novel method based on atomic force microscopy (AFM) working in Ringing mode (RM) to distinguish between two similar human colon epithelial cancer cell lines that exhibit different degrees of neoplastic aggressiveness is reported on. The classification accuracy in identifying the cell line based on the images of a single cell can be as high as 94% (the area under the receiver operating characteristic [ROC] curve is 0.99). Comparing the accuracy using the RM and the regular imaging channels, it is seen that the RM channels are responsible for the high accuracy. The cells are also studied with a traditional AFM indentation method, which gives information about cell mechanics and the pericellular coat. Although a statistically significant difference between the two cell lines is also seen in the indentation method, it provides the accuracy of identifying the cell line at the single‐cell level less than 68% (the area under the ROC curve is 0.73). Thus, AFM cell imaging is substantially more accurate in identifying the cell phenotype than the traditional AFM indentation method. All the obtained cell data are collected on fixed cells and analyzed using machine learning methods. The biophysical reasons for the observed classification are discussed.more » « less
An official website of the United States government
